首页 / 技术资源 / 正文

小众精品 开发者弹药库升级 推荐五个机器学习框架!小众技术资源库

分类:技术资源 2025-06-21阅读量:1

  你可能没听过它们,但今天或许会考虑上手。至于那些不同生态、不同编程语言的工具——对于高手而言,即便没有使用需求,借鉴它们的代码执行也能为自己的产品开发带来许多灵感。

  一帮缺乏艺术细胞的数据科学家,在某年某月某天突然心怀恐惧地意识到:可视化是数据科学最关键的东西之一,而不仅仅是一个加分项。

  “我注意到 Scikit-plot,是因为在 Reddit 上看到了它的作者的发帖,随后几乎立刻便上了手。”

  Scikit-feature 是 Python 的开源特征选取资源库,由亚利桑那州立大学的数据挖掘&机器学习实验室开发。它基于 scikit-learn、Numpy 以及 Scipy。Scikit-feature 内置约 40 个常见特征选取算法,包含传统算法以及一些结构式、流式的特征选取算法。

  所有的特征选取方案,都有一个共同目标:找出多余、不相关的特征。这是一个相当热门的研究领域,对此有无数算法。

  Scikit-feature 既适用于实用特征选取工程,也适合做算法研究。查看它支持的算法列表请点击这里。

  “在积累了经验,尝试了堆叠神经网络、并行神经网络、asymmetric configs、简单的神经网络、多层、dropout、激活函数等各种东西之后,我得出了一个结论:论效果,什么都比不上好的特征选取。”

  Smile 覆盖了机器学习的方方面面,包括分类、回归、聚类、关联规则挖掘、特征选取、流形学习(manifold learning,)、多维尺度分析(MDS)、遗传算法、missing value imputation、最邻近搜索等等。

  对于使用 Java 和 Scala 的开发者,目前来看,Smile 是最合适的机器学习库。你可以把它看作是一个 JVM Scikit-learn。该项目有非常全面的官方教程,地址: 。该教程不仅覆盖了 Smile 使用技巧,还是很高质量的机器学习算法入门资料。

  如果你用 JVM 开发机器学习,Smile 绝对值得一试。事实上,如果你身在这个生态系统却没听过 Smile,才是一桩奇闻。

  Gensim 是一个针对话题建模、文件索引、在大语料库中进行相似性检索的 Python 算法库。目标受众是自然语言处理和信息检索社区。

  Gensim 的文件在这里。KDnuggets 以前发过一篇教新手用 Gensim 搞话题建模的教程,请戳这里。

  本月初,DeepMind 在官方博客宣布了开源 Sonnet 的消息。雷锋网第一时间进行了报道:DeepMind发布Sonnet 帮你用TensorFlow快速搭建神经网络。

  “对于 TensorFlow 而言,自从其在 2015 年末开源,一个由众多高级算法库组成的多样生态系统,便已围绕着它迅速发展起来。这些高级工具,允许常用任务以更简便、更快的方式完成,极大节省了开发者的时间精力。

  作为该生态的新成员,Sonnet 也是如此。它与现有的神经网络算法库有许多共同点,但部分功能专为 DeepMind 的研究需要而设计。”

  Sonnet 是基于TensorFlow 的高级算法库。DeepMind 承认了它与一些现有产品比较类似,但整合了 DeepMind 研究所必须的功能与特性,比如允许特定模块在随机聚集的 Tensor 群组上运行:

  “RNN 的状态,最适合于以异构Tensor 集合来表示,用扁平列表来表示它们很容易会导致错误。Sonnet 提供了处理这些随机等级结构的功能,所以改变你的试验,使用另一种 RNN,并不需要繁冗地修改代码。DeepMind 已经对核心TensorFlow 做了修改,以更好地支持这一使用情况。”

  最后,希望本文能够对你产生帮助。让你知道一些此前没听说过的算法库,或者你并没有意识到自己其实需要的功能。

猜你喜欢